Precast/Prestressed Girder Help

PRESTRESS LOSSES [LRFD INTERIMS 2005 - APPROXIMATE METHOD, ART.5.9.5]

A. Elastic shortening losses (LRFD Interims 2005, Art. 5.9.5.2.3a)

Due to Initial Prestress and due to Beam self weight

Δ f p E S = E p E c i f c g p

Where:

Ep - modulus of elasticity of prestressing steel;

Eci - modulus of elasticity of concrete at transfer or time of load application

Δ f p E S = E p E c i f c g p
P i = N o s t r a n d s × A r e a s t r a n d s × 0.75 × f p u
P i = 27 × 0.153 × 0.75 × 270 = 836.5

ec = 18.48 in

Mg = 1097.7k.ft

Abeam = 843 in2

Ibeam = 203086 in4

f c g p = P i A + P i e c 2 I M g e c I = 0.961 × 836.5275 843 + 0.961 × 836.5275 × 18.48 2 203086 1097.7 × 12 × 18.48 203086 = 1.107 k s i

Therefore,

f p E S = E p E c i f c g p = 28500 4066.84 1.107 = 7.76 k s i

The Elastic Gains

The elastic gains are calculated as E p E c i ( M × e c c I ) for all loads other than prestress and self weight.

Due Precast Loads:

M p r e c a s t = 40.5 k f t
E G p r e c a s t = E p E c t ( M × e c c I ) = 28500 4496.06 ( 40.5 × 12 × 18.48 203086 ) = 0.28 k s i

Due Composite Loads:

M c o m p o s i t e = 93.8 + 158.6 = 252.4 k f t
E G c o m p o s i t e = 28500 4496.06 ( 252.4 × 12 × 18.48 203086 ) = 1.75 k s i

Due Live Loads:

M l i v e = 792.6 k f t
E G l i v e = 28500 × 0.8 4496.06 ( 792.6 × 12 × 18.48 203086 ) = 4.39 k s i

Adjustment

K r r e l e a s e = E p E c i × ( 1 + A g r o s s × e c c 2 I g r o s s ) × A p s A g r o s s ( 1 ( E p E c i × ( 1 + A g r o s s × e c c 2 I g r o s s ) × A p s A g r o s s ) ) = 28500 4496.06 × ( 1 + 843 × ( 18.48 ) 2 203086 ) × 4.131 843 ( 1 + ( 28500 4496.06 × ( 1 + 843 × 18.48 2 203086 ) × 4.131 843 ) ) = 0.0699

Due Precast Loads:

Δ E G p r e c a s t a d j u s t = K r r e l e a s e × E G p r e c a s t = 0.0699 × 0.28 = 0.02 k s i

Due Composite Loads:

Δ E G c o m p o s i t e a d j u s t = K r r e l e a s e × E G c o m p o s i t e = 0.0699 × 1.75 = 0.12 k s i

Due Live Loads:

Δ E G l i v e a d j u s t = K r r e l e a s e × E G l i v e = 0.0699 × 4.39 0.8 = 0.38 k s i

Art. 5.9.5.3 Approximate Estimate of Time Dependent Losses

The time dependent losses are given on Equation 5.9.5.3-1. The first term corresponds to creep losses, the second term to shrinkage losses, and the third to relaxation losses.

B. Creep of Girder Concrete (Art 5.9.5.4.2a)

Δ f s r = 10.0 f p i A p s A g y h y s t

In which:

yh (correction factor for relative humidity of the ambient air)

yh = 1.7 - 0.01H = 1.7 - 0.01 x 70 = 1.00 [Eq. 5.9.5.3-2]

yst (correction factor for specified concrete strength at time of prestress transfer to the concrete member)

y s t = 5 ( 1 + f c i ) = 5 ( 1 + 4.5 ) = 0.9091

fpi - prestressing steel stress immediately prior to transfer

- jacking x fpu = 0.75 x 270 = 202.5 ksi

Therefore:

Δ f C R = 10.0 f p s A p s A g γ h γ s t = 10.0 × 202.5 × 4.131 843 × 1.00 × 0.9091 = 9.02 k s i

C. Shrinkage of Girder Concrete (Art 5.9.5.4.2b)

Δ f S H = 12.0 γ h γ s t = 12 × 1.00 × 0.9091 = 10.9092 k s i

D. Relaxation of Prestressing Strands (Art. 5.9.5.4.2c)

An estimate of relaxation loss taken as 2.5ksi for low relaxation strand, 10.0 ksi for stress relieved strand, and in accordance with manufacturers recommendation for other type of strand.

Δ f = 2.5 k s i

Total losses at transfer:

Δ f p i = Δ E S = 7.76 k s i

Stress in tendon after transfer:

f p t = ( f p i Δ f p i ) = 202.5 7.76 = 194.74

Force per strand

= (Stress in tendons after transfer) (area of strand)

= 194.74 × 0.153 = 29.768 k i p s

Therefore total prestressing force after transfer is:

P i = 29.795 × 27 = 804.465 k i p s
Δ f p i f p i = 7.76 202.5 = 3.83 %